Covariance Matrix Reconstruction via Residual Noise Elimination and Interference Powers Estimation for Robust Adaptive Beamforming
نویسندگان
چکیده
منابع مشابه
Adaptive M-Estimators For Robust Covariance Estimation
Robust covariance estimates are required in many applications. Here, a promising adaptive robust scale estimator is extended to this problem and compared to other robust estimators. Often the performance analysis of covariance estimators is performed from the perspective of the final application. However, different applications have different requirements, hence we make a comparison based on so...
متن کاملAdaptive Thresholding for Sparse Covariance Matrix Estimation
In this article we consider estimation of sparse covariance matrices and propose a thresholding procedure that is adaptive to the variability of individual entries. The estimators are fully data-driven and demonstrate excellent performance both theoretically and numerically. It is shown that the estimators adaptively achieve the optimal rate of convergence over a large class of sparse covarianc...
متن کاملNull broadening adaptive beamforming based on covariance matrix reconstruction and similarity constraint
In this paper, a procedure for the null broadening algorithm design with respect to the nonstationary interference is proposed. In contrast to previous works, we first impose nulls toward the regions of the nonstationary interference based on the reconstruction of the interference-plus-noise covariance matrix. Additionally, in order to provide a restriction on the shape of the beam pattern, a s...
متن کاملRobust Widely Linear Beamforming via an IAA Method for the Augmented IPNCM Reconstruction
Based on the reconstruction of the augmented interferenceplus-noise (IPN) covariance matrix (CM) and the estimation of the desired signal’s extended steering vector (SV), we propose a novel robust widely linear (WL) beamforming algorithm. Firstly, an extension of the iterative adaptive approach (IAA) algorithm is employed to acquire the spatial spectrum. Secondly, the IAA spatial spectrum is ad...
متن کاملRobust Adaptive Beamforming Based on Co- Variance Matrix Reconstruction for Look Direction Mismatch
The performance degradation in traditional adaptive beamformers can be attributed to the imprecise knowledge of the array steering vector and inaccurate estimation of the covariance matrix. The inaccurate estimation of the covariance matrix is due to the limited data samples and presence of desired signal components in the training data. The mismatch between the actual and presumed steering vec...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: IEEE Access
سال: 2019
ISSN: 2169-3536
DOI: 10.1109/access.2019.2912402